Abstract

In order to investigate the effect of phase separation (PS) on the super duplex stainless steel SAF 2507, the evolution of the nanostructure, mechanical properties, and corrosion resistance of the alloy was studied after aging at 500 °C for 1, 10, 100, and 1000 h. The nanostructure of PS was quantitatively characterized by small-angle neutron scattering. The hardness, impact toughness, and pitting corrosion resistance were measured for different conditions. The results show that the early stage of PS had a more significant impact on the nanostructure and properties of SAF 2507. The fracture behavior of the alloy was likely determined by the mechanical properties of ferrite for aged conditions. The pitting corrosion resistance of SAF 2507 aged at 500 °C was closely related to the Cr depletion caused by PS, and the resistance became weaker with the progression of PS. The evolution of the passivation region with aging time correlated well with that of mechanical properties and characteristic parameters of PS, indicating that it is possible to develop a new nondestructive electrochemical method to quantify the evolution of PS in SAF 2507.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.