Abstract

As the size-scale of practical devices shrinks into the sub-micron regime, the atomic characteristics of the component materials are increasingly likely to manifest themselves in the fabrication, properties and stability of the devices. Predicting and controlling this behavior is a challenging problem in statistical mechanics, which can be approached via a length-scaling approach called the continuum step model. The successful application of this model to developing and analyzing experiments on surface mass transport on Si will be presented. The relationship between equilibrium step fluctuations and large scale mass transport on Si surfaces has demonstrated in quantitative measurements on the formation and decay of metastable structures. The use of this approach to determine the physical mechanisms underlying the spontaneous formation of metastable structures under a driving force induces by bulk electrical current, e.g. a surface electromigration effect, will be reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.