Abstract

Research on the MgB2/Ni and MgB2/B multilayer films fabricated by an electron beam (EB) evaporation technique have been extensively carried out. The critical current density, Jc of MgB2/Ni and MgB2/B multilayer films in parallel fields has been suggested to be higher than that of monolayer MgB2 film due to introducing the artificial pinning centers of nano-sized Ni and B layers. Nanostructure characterization of the artificial pinning centers in the multilayer films were examined by transmission electron microscopy (TEM) and scanning TEM (STEM-energy dispersive X-ray spectroscopy (STEM-EDS))–EDS to understand the mechanism of flux pinning. The growth of columnar MgB2 grains along the film-thickness direction was recognized in the MgB2/Ni multilayer film, but not in the MgB2/B multilayer film. Nano-sized Ni layers were present as crystalline epitaxial layers which is interpreted that Ni atoms might be incorporated into the MgB2 lattice to form (Mg,Ni)B2 phase. On the other hand, nano-sized B layers were amorphous layers. Crystalline (Mg,Ni)B2 layers worked more effectively than amorphous B-layers, providing higher flux-pinning force that resulted in higher Jc of the MgB2/Ni multilayer film than the MgB2/B multilayer film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call