Abstract

Dye-sensitised solar cells (DSSCs) are one of the promising photovoltaic devices based on nanosized metal oxide semiconductors. We have focused on ZnO photoelectrodes and their nanostructural control in terms of nanomaterials processing. Since significant photophysical and electrochemical reactions take place around electrodes in the operation of DSSCs, their performance depends greatly on nanostructure of photoelectrodes. In this review article, we introduce our series of studies on nanostructural control of ZnO photoelectrodes to enhance the cell performance. It is shown that the introduction of macroporous ZnO particles as light scattering layers is effective to improve the light harvesting efficiency. Formation of silica nanolayers on ZnO electrodes is also proven to be beneficial to suppress the recombination of photogenerated electrons and enhance the charge collection efficiency. In both cases, short-circuit photocurrent density and open-circuit photovoltage were increased and hence, light-to-electricity conversion efficiency could be enhanced up to 4.80% only by controlling the photoelectrode structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.