Abstract

This study focuses on the fabrication of polymer nanocomposite films using polyvinyl alcohol (PVA)/graphene quantum dots (GQDs). We investigate the relationship between the structural, thermal, and nanoscale morphological properties of these films and their photoluminescent response. Although according to X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and differential thermal analysis (DTA), the incorporation of GQDs does not significantly affect the percentage crystallinity of the PVA matrix, for a range of added GQD concentrations, atomic force microscopy (AFM) showed the formation of islands with apparent crystalline morphology on the surface of the PVA/GQD films. This observation suggests that GQDs presumably act as nucleating agents for island growth. The incorporation of GQDs also led to the formation of characteristic surface pores with increased stiffness and frictional contrast, as indicated by ultrasonic force microscopy (UFM) and frictional force microscopy (FFM) data. The photoluminescence (PL) spectra of the films were found to depend both on the amount of GQDs incorporated and on the film morphology. For GQD loads >1.2%wt, a GQD-related band was observed at ~1650 cm-1 in FT-IR, along with an increase in the PL band at lower energy. For a load of ~2%wt GQDs, the surface morphology was characterized by extended cluster aggregates with lower stiffness and friction than the surrounding matrix, and the PL signal decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call