Abstract

Metal–oxide–semiconductor field-effect transistors (MOSFETs) have significant role on producing the electronic devices. The producers try to make the chips in smaller size so they need materials with high dielectric constant. Here, in this research, Al/Sn/La2O3 will introduce as a material with higher dielectric constant and less defections. In this research, Al/Sn/La2O3 nanostructure was prepared by sol–gel and spin-coating methods. Lanthanum chloride (LaCl3·7H2O), cetyltrimethylammonium bromide, ammonia (25%), aluminum tri-sec-butylate (C12H27AlO3), acetyl acetone (C2H5O8), isopropyl alcohol (C3H8O), Tin (II) chloride (SnCl2) and H2O were used to synthesize Al/Sn/La2O3. Structural properties and surface morphology of nanocrystallites were investigated by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy and Fourier-transform infrared radiation, respectively. Electrical properties were determined with metal–dielectric–semiconductor through capacitance–voltage (C–V), the hysteresis curve and current density–voltage (J–V). The conduction mechanism was measured in the temperature range of 330 K < T < 410 K and in the electrical field < 0.12 MV cm−1, and the results showed ohmic emission. A thermal excited model was proposed to explain the mechanism of ohmic conduction current. The highest value of dielectric constant (k) for Al/Sn/La2O3 structure was 33 at T = 250 °C with almost amorphous structure. The result showed that $$ \frac{{I_{\text{on}} }}{{I_{\text{off}} }} $$ of Al/Sn/La2O3 structure was ~ 1.3. The leakage current and capacitance–voltage of Al/Sn/La2O3 nanocomposite for the sample calcined at T = 250 °C showed that this sample can be good enough for using as a gate dielectric of MOSFETs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.