Abstract

A work describes a deeply etched, long active length, high sensitivity short Fabry-Perot cavity nano-strain resolution sensor. The presented sensors exhibit high spectral sensitivity, low intrinsic temperature sensitivity which is for about 40 times lower than in case of FBG, small size and mounting comparable to conventional Fiber Bragg gratings. The sensor high potential is not only high sensitivity and low temperature intrinsic sensitivity, but also in short cavity length and its tunability, which can be simply accomplished in one production step. This brings versatility in interrogation with different general purpose and cost-efficient VIS-NIR widely available linear detector array-based spectrometers, while still providing strain sensing resolution within the range of few 10 nε. A strain resolution of 20 to 70 nε was demonstrated when using a cost-efficient VIS spectrometer. Furthermore, the sensor structure can be combined with multimode telecom lead-in fibers and low-cost broadband LEDs intended for automotive/lightning applications, which allow production of cost efficient solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.