Abstract
Cyclodextrin-based nanosponges have been found to bepromising drug delivery systems. This paper investigates an application that still needs to be studied in depth, that is, the oral delivery of peptides and proteins, choosing insulin as a case study. The nanospongewas synthesized by crosslinkingβ-cyclodextrins withpyromellitic dianhydride, adopting a top-down approach for its subsequent formulation. Aphysicochemical characterization, in-vitro andin-vivo tests were carried out on the formulation developed. It was nanometric (around 250nm) with high negative zeta potential, mucoadhesion and swelling properties, good loading capability (about 14%) and encapsulation efficiency (above 90%). The in-vitro release of insulin was negligible at a gastric pH (below 2%) while sustained at an intestinal pH, thus showing a pH-sensitive behaviour of the nanosponge. The Caco-2 cell permeability assay proved that the intestinal permeation of insulin was enhanced when loaded inside the nanosponge. The in-vivo studies confirmed the presence of insulin in rat plasma and a marked hypoglycemic effect in diabetic mice after duodenal and oral administrations, respectively. These preliminary results are encouraging with a view to continuing to study this β-cyclodextrin nanosponge technology for the oral administration of insulin and extending this approach to other proteins of pharmaceutical interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.