Abstract
To scale down thin-film transistor (TFT) channel lengths for accessing higher levels of speed and performance, a redesign of the basic device structure is necessary. With nanospike-shaped electrodes, field-emission effects can be used to assist charge injection from the electrodes in sub–200-nm channel length amorphous oxide and organic TFTs. These designs result in the formation of charge nanoribbons at low gate biases that greatly improve subthreshold and turn-off characteristics. A design paradigm in which the gate electric field can be less than the source-drain field is proposed and demonstrated. By combining small channel lengths and thick gate dielectrics, this approach is also shown to be a promising solution for boosting TFT performance through charge focusing and charge nanoribbon formation in flexible/printed electronics applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.