Abstract

HypothesisBlending amphiphilic triblock (A-B-A) and diblock (A-B) copolymers comprised of the same hydrophobic tyrosine-derived oligomeric B-block and hydrophilic poly(ethylene glycol) methyl ether (mPEG) A-block can provide highly tunable self-assembled nanosphere particle sizes suitable for biomedical applications. ExperimentTriblock and diblock copolymers were synthesized via carbodiimide chemistry and were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The amount of free PEG present in the purified copolymers was determined using a standard addition calibration curve and GPC peak deconvolution methods. Nanospheres were prepared by co-precipitation of each copolymer and of copolymer blends over a range of mole ratios. Nanospheres were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and % polymer recovery post-preparation. FindingPrecise synthesis control produced triblock and diblock copolymers with narrow molecular weight distributions and minimal residual reactants. Self-assembled nanosphere particle sizes were 33 nm for the triblock and 129 nm for the diblock, and the size of their blends increased continuously as a function of mole ratio within that biomedically relevant range. Addition of unreacted PEG had minimal impact on either triblock or diblock nanosphere particle sizes whereas addition of unreacted oligomeric B-block increased nanosphere sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.