Abstract

Polymeric nanospheres consisting of poly(methyl methacrylate) (PMMA) cores and poly(ethylene glycol) (PEG) branches on their surfaces were prepared by free radical copolymerization of methyl methacrylate (MMA) with PEG macromonomers in ethanol/water mixed solvents. PEG macromonomers having a methacryloyl (MMA-PEG) and p-vinylbenzyl (St-PEG) end group were used. It has become clear that the obtained polymer dispersions form three kinds of states, particle dispersion (milky solution), clear solution, and gel/precipitation. It was found that the reaction parameters such as MMA concentration, molecular weight, and concentration of PEG macromonomers, and water content can affect nanosphere formation in a copolymerization system. The water volume fraction of mixed ethanol/water solvents affected the particle size of the nanospheres. These differences in the formation of nanospheres were due to the solvophilic/solvophobic balance between the copolymers and solvents during the self-assembling process of the copolymers. The sizes of nanospheres can be controlled by varying concentration of PEG macromonomer and water content in solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1811–1817, 2000

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call