Abstract

GaAs nanowires (NWs) exhibit different, zinc blende (ZB) and wurzite (WZ), crystalline phases and one generally finds an uncontrolled switching between both phases on a scale of 1–10 nm. The change of crystalline structure and stacking fault density strongly affects the local confinement potential of GaAs NWs. Combining low temperature near-field spectroscopic imaging and transmission electron microscopy measurements performed on the very same individual GaAs nanowire allows us to gain an understanding of the local structure–property correlations in such wires. From the photoluminescence measurements at subwavelength spatial resolution local characteristics of the band structure are derived. In particular, our method enables us to assign the observed band gap reduction to the high level of impurity dopants and to distinguish emission from ZB-type regions and from periodically twinned superlattice regions. In this way we demonstrate the ability to trace spatial variations of the crystal structure along the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.