Abstract

The ability of chitosan biopolymer to coordinate vanadium, tungsten and molybdenum metallic species and to control their mineralisation growth provides a new family of surface-reactive organic-inorganic hybrid microspheres. Drying the resulting materials under supercritical conditions allowed the gel network dispersion to be retained, thereby leading to a macroporous catalyst with surface areas ranging from 253 to 278 m(2) g(-1). On account of the open framework structure of these microspheres, the redox species entangled within the fibrillar network of the polysaccharide aerogels were found to be active, selective and reusable catalysts for cinamylalcohol oxidations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.