Abstract

Shikonin (Shik), a natural pigment, has received growing interest in various biomedical fields due to its anti-inflammatory, antitumor, antimicrobial, and antioxidant ability. However, some inherent characteristics of Shik, such as its virulence, low bioavailability, and poor solubility, have limited its biomedical applicability. Here, we reported a facile synthetic method to produce the Shik-iron (III) nanoparticles (Shik-Fe NPs), which could overcome these limitations of Shik. The synthesized Shik-Fe NPs possessed a uniform size range of 110 ± 10 nm, negative surface charges, good water dispersity, and high safety. Iron distributed uniformly inside Shik-Fe NPs, and iron constituted 20% of total mass in PEGylated Shik-Fe NPs. When interacting with activated macrophages, Shik-Fe NPs significantly reduced the level of cellular inflammatory factors, for example, iNOS, IL-1β, and TNF-α. Furthermore, the Shik-Fe NPs demonstrated synergistic anti-inflammation and anti-bacterial properties in vivo, since they could release Fe3+ and Shik to eradicate bacteria (Staphylococcus aureus and P. aeruginosa were used as model microbes here) during wound infections and provide full recovery for scald wounds. Collectively, the study established a dual-functional Shik-derived nanoplatform, which could be useful for the treatment of various inflammation-involved diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call