Abstract

Takovite, a natural mineral with the formula Ni6Al2(OH)6CO3·5H2O belongs to the large class of layered double hydroxides (LDHs) and contains positively charged Ni(II) and Al(III) layers alternating with layers containing carbonate ions and water molecules. Mesoporous takovite-type layered double hydroxides (LDH) of the general formula [Ni1−xAlx(OH)2]x+(CO32−)x/2·nH2O with different Ni/Al molar ratios (1.9–2.8) have been successfully synthesized by the sol–gel method, followed by anionic exchange using nickel acetylacetonate and aluminum isopropylate as cation precursors. A single LDH phase and an anisotropic growth of very small crystallites (below 4nm) have been evidenced by X-ray diffraction. The effect of samples’ composition on their structural and textural characteristics has been investigated. The BET surface area values are in the range of 100–122m2/g. BJH pore radius decreased with increase in the Al(III) content in the LDHs. FESEM micrographs show large aggregates of highly porous LDH particles, while TEM analysis reveals irregular agglomerates of crystallites, among which some of them displayed a developing hexagonal shape. The average particle size variation with the Al(III) content in the samples follows the same trend as the pore radius, the sample with the highest Ni/Al ratio displaying also the smallest particle size. This sample becomes even more interesting, since TEM analysis shows agglomerates with inside circular structures, feature not observed for the other Ni/Al ratios investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.