Abstract

Water splitting to hydrogen and oxygen is an important reaction to store sustainable energies, and water oxidation is identified as the bottleneck for water splitting because it requires the high activation energy to perform. Herein a nano-sized Mn oxide/agglomerated silsesquioxane composite was used to synthesize an efficient catalyst for water oxidation. The composite was synthesized by a straightforward and simple procedure and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, X-ray diffraction spectrometry, and electrochemical methods. Silsesquioxane causes good dispersion of Mn in the composite. The water-oxidizing activity of this composite was studied in the presence of cerium(IV) ammonium nitrate. The composite at the best calcination temperature (300°C) shows a turnover frequency 0.3 (mmol O2/mol Mn.s). Regarding the low-cost, environmentally friendly precursors, simple synthesis, and efficiency for water oxidation, the composite is a promising catalyst that can be used in artificial photosynthetic systems for water splitting. We used Agglomerated silsesquioxane as a support for nano-sized Mn oxide to synthesize a good water-oxidizing catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.