Abstract

Low-cost, stable, and highly active electrocatalysts for oxygen reduction reaction (ORR), especially for pH-universal ORR, are vital for developing numerous renewable energy devices. Herein, a hierarchical N, S-codoped porous carbon-based catalyst (ZFP-800) coupled with abundant FeS/ZnS heterojunctions was facilely prepared via direct pyrolysis of a Ferrocene-crosslinked pyrrole hydrogel composited with zeolitic imidazolate framework-8 (ZIF-8) templates. Compared with the heterojunction-free catalytic activity, the ZFP-800 catalytic activity was significantly higher in pH-universal ranges. Moreover, the ZFP-800 exhibited competitive ORR performance to commercial Pt/C (20%) in various electrolytes, in terms of onset (Eonset), half-wave potentials (E1/2), limiting current density (JL), durability, and methanol immunity. For instance, it exhibited super ORR catalytic activity on Eonset and E1/2, and exceeded that of the benchmark Pt/C in both the alkaline and neutral media. Furthermore, the application of ZFP-800 as a cathode catalyst in a home-made Zn–air battery demonstrated its operation capability in ambient conditions with a competitive performance on the specific energy density (828 mA·h·gZn–1), maximum discharge power density (205.6 mW·cm−2), rate performance, and the long-term stability (188 h at 5 mA·cm−2). This study can facilitate the development of advanced heterojunction-based materials for renewable energy applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.