Abstract

A series of nanosized Co/Zn/Mn/K composite catalysts for Fischer-Tropsch synthesis (FTS) were prepared by supercritical fluid drying (SCFD) method and common drying (CD) method. The nanosized cobalt-based catalysts were characterized by XRD, TEM and BET techniques. Their catalytic performances were tested in a slurry-bed reactor under FTS reaction conditions. The drying and crystallization were carried out simultaneously during SCFD, therefore, the catalysts prepared by SCFD method have ideal structure and show the FTS performance superior to the others prepared by CD method. The FTS activity and selectivity were improved via adding Zn, Mn and K promoters, and less CH 4 and CO 2 as well as higher yield of C 5+ products were achieved. The optimal performance of a 92% CO conversion and a 65% C 5+ product yield was obtained over a catalyst with the component of Co/Zn/Mn/K = 100/50/10/7. Furthermore, the catalytic performance was studied under the conditions of liquid-phase and supercritical phase slurry-bed, and C 5+ product yield were 57.4% and 65.4%, respectively. In summary, better catalytic performance was obtained using the nanosized catalyst prepared by SCFD method under supercritical reaction conditions, resulting in higher conversion of CO, less CO 2 byproduct, and higher yield of C 5+ products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.