Abstract

Nano-sized crystals of calcined hydroxyapatite (HAp) having spherical morphologies were fabricated by calcination at 800 degrees C for 1 h with an anti-sintering agent surrounding the original HAp particles and the agent was subsequently removed by washing after calcination. The original HAp particles were prepared by a modified emulsion system, and surrounded with poly(acrylic acid, calcium salt) (PAA-Ca) by utilizing a precipitation reaction between calcium hydroxide and poly(acrylic acid) adsorbed on the HAp particle surfaces in an aqueous medium. In the case of calcination without PAA-Ca, micron-sized particles consisting of sintered polycrystals were mainly observed by scanning electron microscopy, indicating the calcination-induced sintering among the crystals. On the other hand, most of the crystals calcined with the anti-sintering agent were observed as isolated particles, and the mean size of the HAp crystals was around 80 nm. This result indicates that PAA-Ca and its thermally decomposed product, CaO, surrounding the HAp crystals could protect them against calcination-induced sintering during calcination at 800 degrees C. The HAp crystals calcined with PAA-Ca showed high crystallinity, and no other calcium phosphate phases could be detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.