Abstract

We study overdamped stochastic model describing adsorption or desorption processes with nonequilibrium chemical reactions on the surface. It is shown that internal noise satisfying the fluctuation-dissipation relation at small intensities governs transitions between ordered thermodynamical dense and diluted phases. These phase transitions are characterized by an increase of fluctuations of the coverage filed and correlation radius of spatial modulation. At large noise intensity a transition towards disordered phase with chaotic spatial configuration is realized. We have shown that organized stationary patterns are of nanometer range. We define that both period of stationary structures and corresponding correlation radius depend on the noise intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.