Abstract
Alginate (Alg) hydrogels possess desirable advantages for application in tissue engineering; however, they are limited by their weak mechanical properties, poor chronical stability in phosphate buffered saline, and absence of mammalian cell recognition sites, severely restricting their biomedical applications. To overcome these limitations, we integrated Alg hydrogels with nano-silica (SiO2) to produce nano-SiO2 reinforced Alg–chitosan–gelatin nanocomposite hydrogels (Alg/SiO2–CHI–GA NCH) for biomedical purposes, utilizing Chitosan (CHI) and gelatin (GA) in an alternate electrostatic adsorption. Specifically, we investigated the regulatory and promotional effects of the nano-SiO2 on the morphological structure, mechanical properties, thermal stability, rheological properties, swelling, biodegradability, biomineralization and cytocompatibility of the resultant Alg/SiO2-CHI-GA NCH. The experimental findings demonstrate that the constructed Alg/SiO2-CHI-GA NCH exhibited uniform morphology and a regular structure. Upon freeze–drying, the internal cross-sections of the NCH exhibited a honeycomb porous structure. Furthermore, the physicochemical properties and biological activities of the prepared Alg/SiO2–CHI–GA NCH were regulated to some extent by nano-SiO2 content. Notably, nano-SiO2 inclusion enhanced the attachment and viability of MG63 and MC3T3-E1 cells and induced three-dimensional cell growth in ALG/SiO2–CHI–GA NCH. Among the fabricated NCH, Alg/SiO2–CHI–GA NCH with 0.5% and 1.0% (w/v) nano-SiO2 exhibited significant proliferative activity, which is attributable to their high porosity and uniform cell adhesion. Furthermore, the alkaline phosphatase activity in the cells gradually increased with increasing of nano-SiO2 amount, indicating the favorable effect of nano-SiO2 on the osteogenic differentiation of MG63 and MC3T3-E1 cells. Our study findings provide a comprehensive foundation for the structural- and property-related limitations of Alg hydrogels in biomedicine, thereby expanding their potential applications in tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.