Abstract
Oxygen and hydrogen isotope composition of neoformed clay minerals is commonly used as a palaeoclimatic proxy. Usually, sediments and rocks (including palaeosols) contain not only neoformed clay minerals, but also detrital and/or diagenetic ones. Together with the usually small size (micro- or nanometric) of the clay minerals in these materials, this can generate difficulties during isotopic analyses by conventional spectrometry. To avoid this problem, we used nanoscale secondary ion mass spectrometry (NanoSIMS) to analyse neoformed clay minerals included in palaeosol levels in early Barremian continental profiles located in NE Spain. The bottom levels of the profiles are rich in kaolinite, whereas the top levels contain smectite (beidellite-type). The isotopic compositions of pure powder standards of kaolinite and beidellite were measured in bulk by conventional mass spectrometry to obtain reference values for calibrating the instrumental mass fractionation. Two common preparation techniques for geological samples were tested (thin sections and thick polished sections), revealing that thin sections are more suitable for NanoSIMS analysis due to their lower resin content. The high spatial resolution of the instrument allowed the elemental mapping of the samples, permitting the localization of the minerals of interest and the measurement of isotopic ratios at selected points (1 x 1 μm2) within the samples. The preliminary isotopic results allowed to distinguish a decrease in the average 18O/16O and D/H ratios from the kaolinite in the bottom levels to the smectite in the top levels, reflecting a change in the climatic conditions. The average δ18O and δD values obtained for kaolinite (δ18OSMOW=18±15‰; δDSMOW=-82±36‰ and δ18OSMOW=14±4‰; δDSMOW=-97±37‰) and smectite (δ18OSMOW=13±14‰; δDSMOW=-167±87‰ and δ18OSMOW=11±6‰; δDSMOW=-180±40‰;), respectively, are consistent with the crystallization of the clays in weathering conditions. Despite the uncertainties of these preliminary isotopic measures, the results obtained allowed to estimate an average temperature for kaolinite formation of 21-22°C, and of 16-17°C for smectite. Given suitable calibration using pure isotopic standards and adequate sample preparation, NanoSIMS can thus have a great applicability in palaeoclimatic studies involving the oxygen and hydrogen isotopic composition of nanometre-sized clay minerals from palaeosols samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.