Abstract

AbstractChitosan (CTS) coatings have been studied as a biocompatible coating on biodegradable magnesium (Mg) alloys to improve the corrosion resistance and bioactivity for medical implants. However, the loose structure of the CTS coating cannot provide ideal long‐time corrosion resistance in the physiological environment. In this study, a nano‐SiO2/CTS composite coating was applied on an Mg alloy substrate using the sol–gel method. The surface characteristics of the samples were examined by Fourier‐transform infrared analysis, X‐ray diffraction, scanning electron microscopy‐energy‐dispersive spectrometry, and contact angle measurements. The particle size and suitable dispersion of the SiO2 nanoparticles inside the composite coating were confirmed by transmission electron microscopy. Further, the corrosion protection behavior of the coatings was examined in a simulated body fluid using potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning electrochemical microscopy analyses. Atomic force microscopy was used to determine the surface morphologies of the samples after the polarization test. The surface characteristics, electrochemical measurements, and immersion test revealed that the SiO2 nanoparticles effectively filled the voids of the CTS coating and significantly improved the corrosion resistance. The optimal concentration of nano‐SiO2 is 1.0 g/L.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call