Abstract

High-performance adhesives are of great importance to achieving strong and durable adhesive bonds in a wide range of applications. This article presents an investigation of the use of nano-sized silica particles to improve the fracture toughness of polymer adhesives, focusing on the effects of particle size, matrix ductility and adhesive thickness. The results reveal that the performance of nano-silica as a toughening additive depends strongly on the matrix’s ductility and adhesive thickness. With merely 2.1vol% nano-silica, the fracture toughness of an epoxy has been improved from 0.19 to 1.34kJ/m2, representing a 605% improvement. Microscopy studies show that this improvement is attributed to the formation of a dilatation zone, approximately 2–3μm thick, which dissipates energy. The nanoparticles in general produce a higher adhesive toughening effect than their micron-sized peers. A significant toughening effect has been made by dispersing the nanoparticles in a relative ductile matrix, while such an effect was not observed for the micro-sized particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.