Abstract

The manner how nano building blocks assemble into hierarchical architectures exerts a tremendous influence on gas-sensing performance of the metal oxides. Here, we focus on tuning the 2D SnO2 nanosheets into 3D hierarchical nanoflowers by manipulating the presence of NaOH, and investigate their gas-sensing functionalities. We find that the blooming SnO2 nanoflowers assembled by ultrathin nanosheets (∼50nm) are shrunk into semi-blooming state, and that the semi-blooming nanoflowers based sensor shows enhanced gas-sensing performance towards the ethanol, which is attributed mainly to the confined effect due to numerous nano or micro reaction rooms by keeping oxygen and ethanol molecules to complete gas-sensing reactions. While the semi-blooming nanoflowers turn into ordered mesoporous via thermally removing the periodically arranged polyvinyl pyrrolidone micelles, their gas-sensing performance is found to be improved dramatically, indicating that sufficient amount of gas diffusion is crucial to gas-sensing properties rather than the fast gas diffusion speed. As a final verification, we fabricate the sensors using the mesoporous semi-blooming SnO2 nanoflowers and successfully monitor the existence of beer by a simple integrated device, making it a promising candidate in detecting drunk driving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.