Abstract

Elastic layer-structured metal–organic frameworks (ELMs) are a family of flexible nanoporous metal organic frameworks (MOFs) showing gate-opening gas adsorption. The gate-opening pressure shifts to a higher value by crystal downsizing. However, the MOF nanoparticles and nanorods showing the gate-opening gas adsorption grow more than 50 nm even for their shortest sides. Here, we describe the synthesis and unique gas adsorption behavior of the first example of nanosheets of ELMs (ELM-NSs). The thickness and horizontal width of the ELM-NSs obtained from a new synthetic method using the inside the bilayers in hyperswollen lyotropic lamellar (HL) phases as sandwich-like reaction fields (SRFs) are a few nanometers and several hundreds of nanometers, respectively. The previously reported rationalization of the temperature dependence of the gate-opening pressures for ELMs enables us to discuss the size effects in terms of the adsorption-induced structural transitions and the Helmholtz free energy change of the host.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.