Abstract

A hierarchical ZnO structure assembled by nanosheets was prepared through a low temperature chemical bath deposition and a growing-melting mechanism was proposed to elucidate the shape evolution. Afterwards, a poly (vinylpyrrolidone) (PVP) assisted hydrothermal method was adopted to decorate TiO2 particles onto the ZnO structure. When used in dye-sensitized solar cells, the device employing the hybrid ZnO/TiO2 photoanode exhibited improved short-circuit current density (Jsc), open-circuit voltage (Voc) and filling factor (FF), which resulted in a higher power conversion efficiency (PCE) of 3.60% in comparison to 1.96% from the pure ZnO cell. Based on the investigation of UV-vis absorption and diffuse-reflection spectra, Mott-Schottky analysis, electronic impedance spectra (EIS) and incident monochromatic photo-to-electron conversion efficiency (IPCE), the effect of TiO2 modification on the photovoltage performances of the ZnO sheet-based hierarchical structures was studied in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.