Abstract

Glutathione (GSH) is the primary antioxidant in cells, and GSH consumption will break the redox balance in cells. Based on this, a method that uses high concentrations of GSH in the tumor microenvironment to trigger the redox reaction of Cu(II) to generate copper nanoprobes with fluorescence and tumor growth inhibition properties is proposed. The nanoprobe mainly exists in the form of Cu(I) and catalyzes the decomposition of hydrogen peroxide into hydroxyl radicals. At the same time, a simple and controllable carbon micro-nano electrode is used to construct a single-cell sensing platform, which enable the detection of glutathione content in single living cells after Cu(II) treatment, providing an excellent example for detecting single-cell biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.