Abstract

The authors describe a method for functionalization of gold nanoparticles (AuNPs) with the supramolecular host molecule, curcubit[7]uril (CB[7]) which can bind rhodamine B (RhB). The fluorescence of RhB is quenched by the AuNPs via surface energy transfer. On addition of ATP, a dimeric RhB-ATP complex is formed and RhB is pushed out of CB[7]. Hence, fluorescence increases by a factor of 8. This fluorescence recovery effect has been utilized to develop a new detection scheme for ATP. The assay, measured at fluorescence excitation and emission wavelengths of 500nm and 574nm respectively, works in the 0.5-10μM concentration range and has a 100nM detection limit. The method is not interfered by UTP, GTP, CTP, TTP, ascorbic acid and glutathione. Graphical abstract Schematic of a method for determination of ATP in the 500 nM to 10 μM concentration range by using fluorescence recovery after surface energy transfer (SET) between rhodamine B (RhB) and gold nanoparticles capped with curcubit[7]uril (CB[7]).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call