Abstract

To investigate the effects of nano-selenium (nano-Se) and Macleaya cordata extracts (MCE) on immune function and oxidative damage of sows and intrauterine growth retardation (IUGR) piglets exposed to heat stress (HS) in large-scale farms, a 2 × 2 factorial design was adopted in this test, and the two factors were nano-Se (0, 0.50mg/kg) and MCE (0, 500mg/kg). A total of 80 sows ([Landrace × Yorkshire] × Duroc, parity 2) were used in a 25-day trial from day 90 of gestation to delivery with 20 replications per group and 1 sow per replication. The dietary treatments of sows were as follows: (1) CON group, basic diet (0.30mg/kg added Se, sodium selenite); (2) Nano-Se group, basic diet (0.00mg/kg added Se) + 0.50mg/kg added nano-Se; (3) MCE group, basic diet (0.00mg/kg added Se) + 500mg/kg added MCE; and (4) Combined group, basic diet (0.00mg/kg added Se) + 0.50mg/kg added nano-Se and 500mg/kg added MCE. The activities of serum SOD, CAT, and GSH-Px of sows and IUGR piglets were significantly increased in MCE group and combined group, and the MDA content was extremely decreased. There were extreme differences in serum IgG level of sows and IUGR piglets, colostrum, and serum IgM level of IUGR piglets in MCE group and combined group compared with CON group. Maternal combined diets increased greatly the levels of serum IL-10 and IFN-γ of sows and IUGR piglets, and decreased extremely the contents of serum IL-1β and TNF-α. MCE alone or combination with nano-Se in sow diets decreased greatly mRNA level of Hsp70 and increased mRNA level of Hsp27 in sows and IUGR piglets. In conclusion, nano-Se and/or MCE can be added to sow diets for the amelioration of HS-induced oxidative damage through improving immune function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call