Abstract

Nanosecond time-resolved infrared (TRIR) spectroscopy has been used to observe singlet thiobenzoylnitrene at 1740 cm(-1) upon photolysis of 5-phenyl-1,2,3,4-thiatriazole in acetonitrile and dichloromethane. Consistent with the experimental observations, thiobenzoylnitrene is predicted by B3LYP/6-31G* calculations to have a singlet ground state with an intense IR band at 1752 cm(-1). Phenyl isothiocyanate is also produced. Kinetic measurements indicate that it is not formed from singlet thiobenzoylnitrene, but rather directly from the thiatriazole. Unlike benzoylnitrene, singlet thiobenzoylnitrene does not react with acetonitrile or dichloromethane on the nanosecond timescale. However, it does react with dimethyl sulfoxide (DMSO) to produce a sulfoximine detected at 1180 cm(-1) (k(DMSO) = 3 × 10(5) M(-1) s(-1)). Benzonitrile (observed at 2230 cm(-1)) is produced from both singlet thiobenzoylnitrene (presumably through a short-lived, unobservable benzonitrile sulfide intermediate) and directly from the thiatriazole. B3LYP/6-31G* calculations also show that the structure of singlet thiobenzoylnitrene is analogous to that of related acylnitrenes, with a significant bonding interaction between the nitrogen and sulfur. Triplet thiobenzoylnitrene, on the other hand, is predicted computationally to have a biradical structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.