Abstract
Early studies showed that the adsorption of nanorods may start from a special "anchored" state, in which the nanorods lose translational motion but retain rotational freedom. Insight into how the anchored nanorods rotate should provide additional dimensions for understanding particle-surface interactions. Based on conventional time-resolution studies, gold nanorods are thought to continuously rotate following initial interactions with negatively charged glass surfaces. However, this nanosecond time-resolution study reveals that the apparent continuous rotation actually consists of numerous fast, intermittent rotations or transitions between a small number of weakly immobilized states, with the particle resting in the immobilized states most of the time. The actual rotation from one immobilized state to the other happens on a 1 ms timescale, that is, approximately 50 times slower than in the bulk solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.