Abstract

Quantum wells in InGaAs/AlGaAs with (110) orientation are attractive as active layers in spin-controlled lasers with circularly polarized emission, while the spin relaxation time is expected to be larger than for (100)-oriented layers. However, the hitherto reported recombination lifetimes (40 ps) and spin relaxation times (440 ps) of (110) InGaAs/AlGaAs structures are insufficient. Here it is shown that higher growth temperatures and higher V/III beam equivalent pressure ratios than previously used in crystal growth by molecular beam epitaxy lead to recombination and spin relaxation times in the nanosecond range at RT, meeting the requirements for application in spin lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.