Abstract

While metal-halide perovskite light-emitting diodes (PeLEDs) hold the potential for a new generation of display and lighting technology, their slow operation speed and response time limit their application scope. Here, high-speed PeLEDs driven by nanosecond electrical pulses with a rise time of 1.2ns are reported with a maximum radiance of approximately 480 kW sr-1 m-2 at 8.3 kA cm-2 , and an external quantum efficiency (EQE) of 1% at approximately 10 kA cm-2 , through improved device configuration designs and material considerations. Enabled by the fast operation of PeLEDs, the temporal response provides access to transient charge carrier dynamics under electrical excitation, revealing several new electroluminescence quenching pathways. Finally, integrated distributed feedback (DFB) gratings are explored, which facilitate more directional light emission with a maximum radiance of approximately 1200 kW sr-1 m-2 at 8.5 kA cm-2 , a more than two-fold enhancement to forward radiation output.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.