Abstract

In cellular electrochemistry, ions respond to stimuli by constantly shuffling across cellular membranes to perform their physiological roles. This flow of ions, the electromotive force, leaves cells vulnerable to exogenous electromagnetic fields that can stimulate and/or modulate cellular activity. An irreparable link exists between changes in ionic concentration and the electric gradient of the cell (or its potential energy). Consequently, we can manipulate the physiology of the cell by altering its permeability to various ions, thereby modulating its electrical gradient. Only a few millivolts in excess of the resting membrane potential can stimulate a dramatic change in ion distribution within the cellular microenvironment. In excitable neural-type cells, electrical-stimulation-induced changes in membrane potential lead to the generation or inactivation of action potentials (AP). These AP trigger activities, such as nerve impulses in

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call