Abstract

Epoxy resin (EP) is one of the most widely-used insulating support materials in electrical power systems, with its insulating performance playing an important role in high-voltage engineering. In this study, a nanosecond pulse-driven Ar/Octamethylcyclotetrasiloxane (OMCTS) plasma jet is developed for fabricating nanocomposite dielectric materials to enhance their EP properties. It is demonstrated that the plasma-enabled polymerization effectively modifies the physical morphology and chemical composition of EP surfaces, where the surface roughness greatly increases with the deposition of less-polar silicon-containing films. Moreover, with an increased OMCTS carrier gas flow rate, the surface conductivity of the EP increases by two orders of magnitude, which is directly related to the appearance of shallow traps in the dielectric surface after Ar/OMCTS plasma treatment. Results show that the trap depth of the electron decreases from 1.21 to 0.99 eV post-treatment, with the OMCTS fragments becoming shallow trap points for charge detrapping and transportation processes. Moreover, the addition of a controlled amount of OMCTS increases the plasma discharge intensity, promotes silicon film deposition, and thus significantly improves the insulation and wettability performance, with higher flashover voltages and water contact angles (WCA). By contrast, excessive addition of OMCTS inhibits the plasma discharge due to the absorption and consumption of energetic electrons by OMCTS molecules. Quantum chemistry calculations are further developed to explore the mechanisms of plasma-induced surface modifications. Overall, the proposed plasma polymerization strategy offers a promising fabrication technique and provides guiding insights into the fabrication of nanocomposite dielectric materials in electrical engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.