Abstract

Examples of Fe complexes with long-lived (≥1 ns) charge-transfer states are limited to pseudo-octahedral geometries with strong σ-donor chelates. Alternative strategies based on varying both coordination motifs and ligand donicity are highly desirable. Reported herein is an air-stable, tetragonal FeII complex, Fe(HMTI)(CN)2 (HMTI = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene), with a 1.25 ns metal-to-ligand charge-transfer (MLCT) lifetime. The structure has been determined, and the photophysical properties have been examined in a variety of solvents. The HMTI ligand is highly π-acidic due to low-lying π*(C═N), which enhances ΔFe via stabilizing t2g orbitals. The inflexible geometry of the macrocycle results in short Fe-N bonds, and density functional theory calculations show that this rigidity results in an unusual set of nested potential energy surfaces. Moreover, the lifetime and energy of the MLCT state depends strongly on the solvent environment. This dependence is caused by modulation of the axial ligand-field strength by Lewis acid-base interactions between the solvent and the cyano ligands. This work represents the first example of a long-lived charge transfer state in an FeII macrocyclic species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.