Abstract

Flexible and controllable fabrication of micro-nano structures on metallic glasses (MGs) endow them with more functional applications, but it is still challenging due to the unique mechanical, physical, and chemical properties of MGs. In this study, inspired by a new physical phenomenon observed in the nanosecond laser-MG interaction (i.e., the surface structure is transformed from the normally observed microgroove into the micro-nano bulge at a critical peak laser power intensity), a nanosecond laser "pulling" method is proposed to pattern the MG surface. The formation mechanism and evolution of the micro-nano bulge are investigated in detail, and accordingly, various micro-nano structures including the unidirectional stripe, pillar, cross-hatch patterns, "JLU", circle, triangle, and square, are derived and created on the MG surface, which affects the surface optical diffraction. Overall, this study provides a highly flexible and controllable method to fabricate micro-nano structures on MGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.