Abstract
Multilayer dielectric gratings(MLDGs)have been widely used in chirped pulse amplification due to their high laser induced damage thresholds(LIDTs). The quest for MLDG LIDT improvement is endless. For MLDGs applied in picosecond(ps) lasers, damage shows the characteristics of both thermal effect and nonlinear effect. The thermal damage of multilayer dielectric films (MLDFs) and MLDGs were investigated using a 1064 nm laser with a duration of 8 ns in our study. Differently from previous 1-on-1 studies, Raster Scan method is adopted to investigate the effect of low-density defects on the laser damage resistance of MLDFs with different top layers and MLDGs. The results show that the LIDTs of MLDGs are half of those MLDFs. For MLDFs with the top layer of HfO2, the damage behaves the ablation of the top layer material due to the surface strong electrical field. For MLDFs with top layer Ta2O5 and SiO2, the typical morphologies are nodule ejections. The initial damage of MLDGs fabricated by etching these three kinds of grating films are similar, and all behave nodule ejections. This indicates that reducing nodule defects can help the MLDGs LIDT improvement in ps pules. These results provide guidance for process optimizations of MLDG fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.