Abstract

Laser coloration is an emerging technique for surface functionalization of metallic glasses (MGs). Understanding the influence of laser parameters on surface color of MGs will accelerate their commercialization. Herein, surface coloration was conducted on a Ti-based MG, and the hue–saturation–intensity (HSI) color space was employed to evaluate color variation. Various colors were achieved by varying the average power and scanning speed in an ambient atmosphere. The results indicated that the overlap rate and number of repetitive scans had a negligible effect on the color and significantly changed the microscopic morphology. The irradiated surfaces were yellowish and colorless in nitrogen and argon atmospheres. Furthermore, the effect of morphology on the surface color and the mechanism of surface coloration were examined. This study demonstrates that nanosecond laser irradiation is an effective method for achieving surface coloration of MGs, which is expected to enrich the surface functionality of MG products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.