Abstract
Experiments of the electrical explosion of tungsten wire with and without insulating coatings demonstrate that the insulating coatings exert a significant influence on the exploding characteristics. The shadowgraphy and interferometry diagnostics are applied to present the morphology of the exploding products. In the experiments, energy of ∼3.2 eV/atom is deposited into the bare tungsten wire at the instant of voltage breakdown, giving a velocity of 0.38 km/s for the high density core. The value and structure of the energy deposition for the tungsten wire explosions are substantially improved by employing the thin dielectric coatings. Energy of ∼15.2 eV/atom is deposited into the coated tungsten wire transforming the wire into gaseous state and the expanding velocity of the high density core is 5.64 km/s. The interference phase shift and atomic density are reconstructed from the interferogram for the exploding coated tungsten wire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.