Abstract
The character and dynamics of the low-lying excited states of [Ru(X)(X')(CO)2(iPr-dab)] (X=X'=Cl or I; X=Me, X'=I; X=SnPh3, X'=Cl; iPr-dab=N, N'-diisopropyl-1,4-diazabutadiene) were studied experimentally by pico- and nanosecond time-resolved IR spectroscopy (TRIR) and (for X=X'=Cl or I) computationally using density functional theory (DFT) and time-dependent DFT (TD-DFT) techniques. The lowest allowed electronic transition occurs between 390 and 460 nm and involves charge transfer from the Ru(halide)(CO) 2 unit to iPr-dab, denoted (1)MLCT/XLCT (metal-to-ligand/halide-to-ligand charge transfer). The lowest triplet state is well modeled by UKS-DFT-CPCM calculations, which quite accurately reproduce the excited-state IR spectrum in the nu(CO) region. It has a (3)MLCT/XLCT character with an intraligand (iPr-dab) (3)pipi* admixture. TRIR spectra of the lowest triplet excited state show two nu(CO) bands that are shifted to higher energies from their corresponding ground-state positions. The magnitude of this upward shift increases as a function of the ligands X and X' [(I)2 < (Sn)(Cl) < (Me)(I) < (Cl)2] and reveals increasing contribution of the Ru(CO)2-->dab MLCT character to the excited state. The lowest triplet state of [Ru(Cl)2(CO)2(iPr-dab)] undergoes a approximately 10 ps relaxation that is followed by CO dissociation, producing cis(CO,CH 3CN),trans(Cl,Cl)-[Ru(Cl)2(CH 3CN)(CO)(iPr-dab)] with a unity quantum yield and 7.2 ns lifetime and without any observable intermediate. To our knowledge, this is the first example of a "slow" CO dissociation from a thermally equilibrated triplet charge-transfer excited state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.