Abstract
The detailed structure of a nanogel formed by self-association of cholesterol-bearing pullulans (CHPs) was determined by contrast variation small-angle neutron scattering. The decomposition of scattering intensities into partial scattering functions of each CHP nanogel component, i.e., pullulan, cholesterol, and the cross-term between the pullulan and the cholesterol, allows us to investigate the internal structure of the nanogel. The effective spherical radius of the skeleton formed by pullulan chains was found to be 8.1 ± 0.3 nm. In the CHP nanogel, there are about 19 cross-linking points where a cross-linking point is formed by aggregation of trimer cholesterol molecules, and the spatially inhomogeneous distribution of the cross-linking points in the nanogel can be represented by the mass fractal dimension of 2.6. The average radius of gyration of the partial chains can also be determined to be 1.7 ± 0.1 nm by analyzing the extracted cross-correlation between the cross-linker and the tethered polymer chain quantitatively, and the size agrees with the value assuming random distribution of the cross-linkers on the chains. As the result, the complex structure of the nanogels is coherently revealed at the nanoscopic level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.