Abstract
Photodynamic therapy (PDT) is an emerging treatment option for cancer. In PDT, photosensitizers are delivered to tumors and stimulated by light to generate reactive oxygen species (ROS)-most importantly singlet oxygen (1O2)-to damage tumor cells or induce tissue ischemia. PDT is associated with a low level of systemic toxicity because photosensitizers are usually pharmaceutically inactive in the dark and photoirradiation is applied only to tumor areas in the procedure. Additionally, PDT can be applied repeatedly without cumulative toxicity or incurring resistance, and may stimulate systemic anti-tumor immunity. However, PDT's clinical use has been restricted due to the limited penetration of visible light through tissues. X-rays possess superior tissuepenetration capability and are exploited in X-ray-induced photodynamic therapyto overcome this limitation. Herein we have demonstrated this principle with a novel LiGa5O8:Cr (LGO:Cr)-based nanoscintillator which emits near-infrared X-ray luminescence to both guide external beam therapy and induce PDT with the photosensitizer (2,3-naphthalocyanine) encapsulated in a mesoporous silica shell of thenanoscintillator.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.