Abstract

We have studied the influence of geometric confinement imposed on the supramolecular architecture of a discotic model compound confined to self-ordered nanoporous alumina. We systematically varied the pore diameter and the chemical nature of the pore walls and studied the systems thus obtained by means of wide angle X-ray diffraction and differential scanning calorimetry. A dominant planar core phase was found for high-energy pore walls consisting of alumina, whereas no apparent texture was present in the case of pore walls coated with non-polar poly(p-xylylene). Inside pores of 35 and 180 nm in diameter, pronounced geometric confinement effects and interfacial effects influence the structure formation. Additionally, we performed molecular dynamics simulations using a coarse-grained discotic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.