Abstract

Zero-valent iron nanoparticles (NZVI) were synthesized using chemical reduction method. These were applied for lead removal from water. The structural, morphological, compositional and optical studies were studied out using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The NZVI optical energy band gap as calculated by UV absorption spectrum was 1.7 eV. The zeta potential was obtained as -32.0 mV. The biocompatibility test of NZVI was performed using MTT assay on MDCK-2 as model cell lines. Lead adsorption on NZVI was examined at different pHs, equilibrium time, temperature, and NZVI/Pb2+ concentrations. Almost 100% Pb2+ removal was achieved at NZVI dose: 0.4 g/L; Pb2+ concentration: 50 mg/L; equilibrium time: 15 min; pH 5-6; and temperature: 25°C. Pb2+ sorption kinetic data were fitted to pseudo-first and second-order kinetic equations. Pseudo-second-order kinetic equation best fitted the data. These studies clearly demonstrate NZVI as an efficient nano-adsorbent for Pb2+ removal from water. Copyright © 2017 VBRI Press

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.