Abstract

Nanoscale zero-valent iron (nZVI) is a prominent nanomaterial for the remediation of organochlorine-contaminated soil and groundwater. However, a knowledge gap regarding the effects of the coexistence of nZVI and pollutants on soil microorganisms remains. Here, we studied the effects of nZVI on the microbial community structure, co-occurrence network, and keystone taxa in pentachlorophenol (PCP, a typical organochlorine pesticide) contaminated soils. The addition of nZVI (1000 mg/kg) had no obvious recovery effect on the microbial community structure of PCP-contaminated soil, but enhanced the connection and lowered the modularity of the microbial network. These changes were mainly present in the bacterial network rather than in the fungal or archaeal network. Moreover, the addition of nZVI increased the number of keystone taxa in the PCP-contaminated soil from 29 to 76. These keystone taxa are related to the degradation of organochlorine pollutants, carbon metabolism, and nitrogen metabolism and may thus be helpful in recovering soil ecological functions. These findings provide new insights into the interaction among nanomaterials, microorganisms, and pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.