Abstract

Wear of sliding contacts causes device failure and energy costs; however, the microscopic principle in activating wear of the interfaces under stress is still open. Here, the typical nanoscale wear, in the case of silicon against silicon dioxide, is investigated by single-asperity wear experiments and density functional theory calculations. The tests demonstrate that the wear rate of silicon in ambient air increases exponentially with stress and does not obey classical Archard's law. Series calculations of atomistic wear reactions generally reveal that the mechanical stress linearly drives the electron transfer to activate the sequential formation and rupture of interfacial bonds in the atomistic wear process. The atomistic wear model is thus resolved by combining the present stress-driven electron transfer model with Maxwell-Boltzmann statistics. This work may advance electronic insights into the law of nanoscale wear for understanding and controlling wear and manufacturing of material surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.