Abstract

Phase shifting diffraction interferometry (PSDI) was adapted to provide real-time feedback control of a laser-based chemical vapor deposition (LCVD) process with nanometer scale sensitivity. PSDI measurements of laser heated BK7 and fused silica substrates were used to validate a finite element model that accounts for both refractive index changes and displacement contributions to the material response. Utilizing PSDI and accounting for the kinetics of the modeled thermomechanical response, increased control of the LCVD process was obtained. This approach to surface tracking is useful in applications where extreme environments on the working surface require back-side optical probing through the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.