Abstract

2D layered materials, such as transition metal carbides or nitrides, known as MXenes, offer an ideal platform to investigate charge transfer processes in confined environment, relevant for energy conversion and storage applications. Their rich surface chemistry plays an essential role in the pseudocapacitive behavior of MXenes. However, the local distribution of surface functional groups over single flakes and within few- or multilayered flakes remains unclear. In this work, scanning X-ray microscopy (SXM) is introduced with simultaneous transmission and electron yield detection, enabling multimodal nanoscale chemical imaging with bulk and surface sensitivity, respectively, of individual MXene flakes. The Ti chemical bonding environment is found to significantly vary between few-layered hydrofluoric acid-etched Ti3C2Tx MXenes and multilayered molten salt (MS)-etched Ti3C2Tx MXenes. Postmortem analysis of MS-etched Ti3C2Tx electrodes cycled in a Li-ion battery further illustrates that simultaneous bulk and surface chemical imaging using SXM offers a method well adapted to the characterization of the electrode-electrolyte interactions at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.